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AbslrneL The ionic positions of Gd’t a1 orlhorhombic sites in GTFZ with a nearly 
charge-compensating M+ ion (M = ti. Nil, K, Rb and CS) are Calculilled from a reliable 
Iatlice relaxation model. mulls are then employed in wperposilion model analyses 
of the corresponding spin prametem of lhe ground State 4f7 ‘S7p splitling of the Fd’+ 
ion available in the lileralurr. The superposition model analyses indicate La1 the spin 
palamclcm can k s t  k described in terms of some intrinsic paramelen which follow 
a p?mlmlic dependence on the ligand distances in addition to tlie conventional power- 
law rorm. and lhence also a~sen llie cancelling nature of various physical mechanisms 
contributing IO LIE ground stale splitting of Gd)+. 

1. lntmduetion 

For a number of years the zero-field splitting of orthorhombic Gd’+-M+ complexes 
(M = Li, Na, K, Rb and CS) in CaF, has been an interesting problem for the EPR 
theorists and experimentalists (see, e.g. Edgar and Newman 1975, Lefferts CI a/ 1978, 
Bijvank CI a/ 1977, 198Oa. h) who have made a systematic tabulation of the spin 
parameters for the 8S,,2 ground state splitting of the Gd’+ ion. Geometrically, each 
system of this complex consists of a local charge-compensating Mt ion located at 
a [ilO] position with respect to the Gd3+ ion, both being doped at the Caz+ sites 
such that the site symmetry of Gd’t is lowered from 0, to C, (see figure 1). It is 
generally expected that the dramatic variations of the spin parameters B; for various 
M+ complexes are closely related to the non-cubic lattice distortions induced by the 
M t  ions. Hence, several previous workers have attempted various approaches such as 
the superposition model (Edgar and Newman 1975) and local distortion calculation 
(Bijvank and Hartog 1980b) to analyse and to correlate those spin parameters with 
the local distortions. However, their results are still rather unsatisfactory (as we shall 
see below), allowing much room for improvement. 

In the superposition model, the spin parameters E;; are separated into the radial 
and angular parts as follows: 

where RiOid,i are the spherical coordinates of the ith ligand and their angular 
variations are contained in the coordination functions Ii;,‘‘(Oqb) tabulated by Newman 
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Figure 1. llie undislorled conflguralion of liie orlhorhombic Cid't: M+: complex. 
lle coordinated F- ligands of Gd'+ am lalxllrd I lo 8. The r y r  coordinate axes are 
centred a1 the GdSt ion and llicir oricnlalion is given in lerms of I l k  clystsl axes a, b 
and c. 

and Urhan (1975). For the contrihutions to the radial intrinsic parameters E,, there 
exist a number of different physical mechanisms (see Newman and Urban (1975) for 
earlier references) such as the one-particle crystal field (CF) (including electrostatic, 
overlap and covalency contributions), the quadratic CF (Siu 1990), the relativistic ff, 
the dynaniical relativistic CF (Pastusiak 1984), the two-particle correlation CF (e.g. 
spin-correlated CF (Yeung and Newman 1986), orbitally correlated CF (Yeung and 
Newman 19S7)) and the Pryce (1950) mechanism etc. which make dissimilar (in both 
sign and magnitude) contributions to E,,. Some preliminary wlculations for the rank 
2 parameter B2 did indicate that the contributions from the ff and relativistic CF are  
opposite in sign to those from the correlation CF and their distance variations should 
theoretically he different. Hence, it is proposed that the overall distance variation of 
8,, is likely to follow a double-power-law form: 

B,,(R)  = B:, ( R , / R ) ' ~  + E:: (R.,,/R)'; (2) 

which will yield a U-shaped cuwe near R, (see figure 3 of Newman and Urhan 1975) 
as a consequence of the various cancelling umtrihutions. Amongst the current 
applications of the superposition model, little effort has hcen devoted to the accurate 
determination of local ligand positions R, 0 ,  d~ which should he different from the 
perfect host positions due  to the impurity-ion-induced local distortion. As a result, it 
is normally impossible t o  ohtain all the contributing parameters for the E,, in (2), to 
wit, E; , ,  E;;,,  t i ,  and from the limited empirical spin parameters, and so almost 
all previous work has assumed, for simplicity and practicality, a single power-law form 
for the intrinsic parameters 

E,,([<) = B , , ( R , )  (R,/R.)'" (3) 

to he valid for all range o f  ligand distance R. Unfortunately, the empirical B,,(R,) of 
Gd3+ derived from this power-law form for various systems (without proper allowance 
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for local distortion) of the same ligand type arc found to he at variance in both 
sign and magnitude (sec, e.g., table 4 of Newman 1975), raising the question of 
Iransferahiliry and superposahilily of individual ligand contributions to overall zero- 
field splitting (Novak and Vosika 1983). 

On the other hand, Yeung and co-workers (e.g. Yeung 1988, Yeung and 
Newman 1988, Choy and Yeung 1990) have reccntly developed a lattice relaxation 
model for calculating the positions of ligands (including local distortion effect) 
surrounding a point defect based on the Kanzaki (1957) 'lattice statics' approach 
which was originally introduced to calculate the  local atomic displacements around a 
vacancy in solid argon. In our previous relaxation model for a defect system consisting 
of a suhstitutional E d C  ion plus a local charge-compensating vacancy in the rocksalt 
lattice, the shell model (Cochran 1971) was employed to describe the dynamiwl 
matrix of the host ionic lattice and hyhridized with the lattice statics method which 
deals with the additional long-range wulomhic interactions arising from the charged 
defects as well as the Kanzaki's short-range repulsive forces. The calculated local 
distortions for Eu2+ in a group of 12 alkali halides were subsequently used to carry 
out a superposition model analysis of the spin-Hamiltonian parameters of E&. The  
fits (Yeung and Newman 1988) turned out to he much better than those ohtained 
by other workers and the values are consistent with those ohtained for E d f  and 
Gd'+ in other systems, providing a significant extension of our understanding of the  
propertics of 4f' ground S-state spin parameters. Further applications had heen made 
to calculate the local distortion induced hy the GdSt ion doped at cuhic sites in various 
fluorites such as CdF,, OF,, SrF,, PhF2 and BaF, (Ycung 19%). The calculated 
ligand distances a re  found to he almost entirely consistent with those derived from 
the superhyperfine and spin parameters of Gdsf .  Hence it is plausihle to extend 
this method to calculate the displacements of all ions surrounding the Gd3+ ion in 
the present orthorhomhic CIF, complexes and to check the goodness of the results 
by analysing the spin parameters for the ground state splitting of Gdsf using the 
supcrposition modcl. 

2. Local distortions amiind GdJf-M+ complexes in CaF, 

2.1. Theov of calculnlions 

When a Gd't ion is dopcd a t  the CaZt site in the host CaF, crystal, lattice distortions 
will occur naturally due to the differences in the short-range rcpulsive potential and 
ionic charges between the host cation and the substituent. In our lattice relaxation 
model, the effect of a point defect is replaced by a set of external 'Kanzaki' forces 
which can charactcrize all the dcfecr-induced propcrties. Furthermore, the ionic 
displacements ~ ( L x )  for the &-type ion of the  Ith unit cell in the defect crystal, 
which is essentially a perfect lattice modulated hy some cxternal Kanwki forces 
F ( k ) ,  are treated using the discrete atomistic hasis. The change &(I) in the 
potential energy hetwcen the defect and perfect crystals is to he  minimized under 
the harmonic approximation. The  equilihrium equations of atomic displacements, to 
wit, i3A~I),l?>t(lti) = 0, a re  then decoupled into matrix equations of very small size 
(9 x 9 for the CaF, lattice) in the reciprocal lattice k-space hy Fourier transform. 
Hence, the displacements u ( k )  in the reciprocal lattice space are  ohtainahle from 
(see Yeung and Newman (19%) for details of derivation) 
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where M 3 A, - ACsA&'As, is the usual dynamical matrix and its detailed 
components for CaF, crystal a re  given explicitly hy Elcomhe and Pryor (1970). 
Briefly, the A matrices represent the quadratic potential energy for the shell model 
(Cochran 1971) description Of the interactions between ionic cores C and shells S 
in the crystal. The  matrices Z and Y denote the ionic charges for the core and 
shell respectively. The generalized Kanzaki forces F consist of the long-range extra 
electric field E(') generated by the charge difference hetween the defect and host 
lattice ions and the defect-induced local force k' which is composed of the short- 
range repulsive part FR and a part from some higher-order coulombic contribution 
pc. Due  to the cuhic site symmctry of GdS+ doped a t  Caz+ site, we may assume 
the nearest-neighhour interaction to be radial in direction so that there is only 
one independent force component E for Pi([&) = F+(lx), and one independent 
displacement component ( for <( lx)  = El:( l&) for interaction with an anion F- 
ligand initially a t  = v ( l ~ ) .  Then, in terms of the short-range potential U(.) (with 
subscript D for a defect at a "'-type cation site), we have 

pR = - 7 J b ( l . ~  + c) + U ' ( T F )  + CO"(1.p) 

F= % -Z,(Z, ,  0 - z , , ) c z ( 2 / 1 , ; ) ( .  
(5) 

(6) 

Putting E = FR + pC into equation (4), we may ohtain the ionic displacements in 
direct lattice space using the following equation 

1 
(7) < ( ~ r ; )  = - -Cw(k)cxp(- ik .  T(lx)) 

N k  

where N is the total numher of wavevectors k taken in the inverse Fourier transform. 
The nearest-neighbour displacement ( can furthermore he decomposed into three 
components. 

< = E E  + <Y E R )  + < C (  F') (8) 

where corresponds to the contribution arising from the long-range coulombic term 
E(') of (4). Here F R  and (' are  respectively linear functions of FR and FC which 
are themselvcs functions of E .  Hence, the unknowns <, ER and pc in the set Of 
equations (S),  (6) and (8) have to he solvcd simultaneously by numerical methods. 

In studying the local distortions for our Gd'+-M+ pair system, the origin (See 
figure 1) is taken at the Gd'+ site = 0 and the alkali metal ion M+ is located at 
site vM = ( i l (J)vU.  We initially consider the ionic displacements induced by the Gd3+ 
and M+ ions separately. By translational symmetry, we may again utilize equation (7) 
to find tht. alkali 1lleLal ioll illduced displacements EM Z we take thc new CoCK!hl!e 

frame with origin at vM. i.e. ~ ( l x )  + r ( lx ) -vM.  Also, we have to substitute U D  and 
ZF, by 7lM and Zz, which a re  hoth different from those for the Gd'+ defect, SO that 
the previous formalism can he  applied to the M+ system directly. Secondly, we should 
include the extra ionic displacements induced by the change in GdS+-M+ interaction 
with respect to the perfect crystal (to wit, the change in their coulombic and short- 
range repulsive interactions). The  corresponding effect can simply he expressed % 
an additional interaction force PI = F,+M, which replaces the short-range force F 
of (4). This ncw force F, will consequently displace the GdS+ and M+ ions towards 
each other and hence induce some extra displacements <I to other ions. 
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Overall, the resultant ionic displacements [ are the direct sums of displacements 
induced by three sources, namely, the Gd3+ defect, the M+ defect and the additional 
interaction between the two point defects. In other words 

< = <Gd + < M  + <I (9) 

where 

CW.M,I = C G ~ . M , I ( % , M . I )  ( 9 4  

AI1 quantities in the above equations refer to direct lattice space and they are to he 
solved simultaneously. In practice, we may rewrite the force equation (9b) as 

in the first approximation and then seek self-consistent results hy iteration. 

2.2. Results and discussioris 

In the present calculations, the force parameters for the lattice relaxation model 
(including those for the shell model of the lattice dynamical matrix) of the CaF, crystal 
are taken from Elcomhe and Pryor (1970) and same as those used by Yeung (1988) 
while the interaction potential parameters of the Born-Mayer form for the M+-F- 
pairs are adopted from those tabulated by Bijvank and Hartog (19SOh). The local 
displacements of the nearest- and next-nearest-neighhour ions of Gd’+ and M+ in 
the above-mentioncd five orthorhombic CaF, complexes have been calculated hut the 
results a re  too lengthy to he fully presented here. Instead, only the shifts of a few ions 
in the Gd3+ : K+ : CaF, complex are given in table 1 because they can he compared 
with some experimental data such as the ENDOR (Bijvank and Hartog 1980a) and 
the electron spin echo envelope modulation (ESEEM) measurement (Drogendijk et al 
1987). Those results can also he compared with previous local distortion calculations 
by Bijvank and Hartog (1980h) who have followed Mott and Littleton’s (1938) ‘semi- 
discrete’ approach in which only a very limited number of ions around the defects 
were treated as discrete entities and the remainder of the crystal was regarded 
as a dielectric continuum. This wnt inuum approximation for most of the defect 
crystal is obviously less reliable than our  present discrete atomistic (and harmonic 
approximation) approach for the whole crystal. Intrinsically, Mott and Littleton’s 
approach possesses a mismatch problem for the displacements of ions lying a t  the 
interface hetwcen the discrete and continuum regions. In principle, the errors caused 
by the continuum approximation and mismatch problem can be reduced by taking 
a sulliciently large discrete region but this will necessitate a tremendous increase in 
computing time and memory. Hence, Bijvank and Hartog were ahle to consider only 
a rather small number of relaxing ions in the discrete region, namely, 24 and 44 
for their methods A and B, respectively. From tahle 1, it is ohvious that ours a re  
quite consistent with the experimental data as well as the more accurate calculations 
(method B) by Bijvank and Hartog (1984%). It is noted that the ENDOR data are 
reliable only for more distant ligand positions whereas the ESEEM measurement for 
the change in GdS+-K+ distance by Drogendijk c’t al (1987) clearly asserts the higher 
reliahility of our relaxation model. 
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Table 1. Calculated shilll (in A) of ions in Gd't: K+:  CaFz complex 

Bijvank and Hnrtog (1980b) 
ion (hOS1 Presen1 
Llllice site) Mrlhod A Method B calculalion Experiment 

~ d ' +  (ono) 0.03 0.06 0.002 <0.03' 
[- (113 2.2.2) 0.05 0.02 0.02 <o.ns= 
F- (if:) 0.05 0.02 0.02 0.04a 

F- (1.11 2 )  0.80 0.27 0.25 0 . w  
Fnulionnl clinnge in Gd'+-K+ dislance 

3.1% 2.7% 1.8% 2 . 0 i 0 . 1 % ~  

ENDOR data Imnl Bijvanli and Hanog (1980a). 
€SEEM measurement Irom Drognedijk CI ol (1987). 

3. Superposition nindel analyses of spin parameters of Gd3+ 

As suggested hy Ncwman and Urhan (1975), thc supcrposition modcl analyses of the 
spin parameters of Gd'+ in various orthorhomhic OF, complexes using equation (1) 
should form another ohjectivc assessment on the accuracy of our calculated positions 
for the nearest ligands of Gd". Before proceeding, the displaced ligand positions 
have to he cxpresscd in polar coordinates with the origin of the z y z  axes being 
located at  the Gd'+ ion (see figure 1). Then, the calculated positions ( R ; ,  O,, 4;) 
for the eight nearest-neighbour F -  ligands of Gd'+ at cuhic and orthorhomhic sites 
in CaF, are given in tahle 2. From the qv site symmetry of Gd3+, it is noted that 

and &5 = 360" - d,,. The extent of the local distortion can he seen from the 
comparison with the perfect host lattice values in which R., = 2.354 A, 0, = 35.26", 
0, = 54.74O and 0, = 144.74'. Putting those valucs of ligand polar coordinates into 
equation ( I ) ,  it is tried to fit the experimental spin parameters (tabulated in tahle I 
of Lcfferts cl nl 197s) for all the live M+ complexes simultaneously to the intrinsic 
parameters B,,( Ri) of the form given by equation (3) as wcll as a new form which 
reads 

Rzi = Rz;-i, 0,i = 02i-1, 412; = 4Zi-l + ISO', 4 1  = $7 = 0, R, = R,, 05 = 03, 

The results for the rank 7 1  = 2 and 4 parameters are respectively summarized in 
tables 3 and 4 which also includes the lits using the ligand positions derived directly 
from Bijvank and Hartog's (19SOh, method B) local distortion calculation. Note that 
the quality of lit s delined in Cochran (1971) is minimized in each of the least-squares 
fit bur it is equally well rcprescnred by the KMS dcviaiiuns. 

Comparing fin ( 0 )  and (c) for the lirst term of equation (IO) i.e. B:: = 0 which 
is equivalent to the conventional power-law form (3) for the distance dependence 
of the intrinsic paramctcr &(r(,), the RMS dcviations in tahles 3 and 4 clearly 
indicate that our calculated ligand positions are hettcr than those of Bijvank and 
Hartog (19SOh) in descrihing the spin paramctcrs. For lits (b)  and ( d )  in tahles 3 
and 4, we add the pr3hol ic  term of (IO) with one additional free parameter pd 
for each rank 71. From the rclative changes in the RMS deviations between (a )  and 
(b) for Bijvank and Hartog's ligand positions and hetween (c) and ( d )  for OUTS, we 
immediately see that thc paraholic term in ( IO)  does yield a very great improvement 
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Tnhle 2. Calculated polar positions of the coordinated F- ligands of Gd3+ in the 
cubic (Gd3+ only) and various orlhorhombic (with chargecompensating M+ ion) CaF2 
complexes. l l i e  coordinate frame and Uie ligand l a k l s  are defined in figure 1. The ligand 
distances R; and angles 8; and 6, are given in units of A and degmes, respectively. 

Gdif and charge-compensating Mf ion 
tigand polar a’+ 
coordinalrs only U Na K Rb 0 
R I  2325 2.279 2278 2.277 2.278 2281 
81 3 5 2 4  38.61 39.49 41.36 42.27 44.10 
R3 2325 2.375 2.381 2.394 2.401 2413 
8 3  90.000 91.75 91.55 91.14 90.94 90.54 
43 54.736 55.36 55.49 55.77 55.91 56.18 
RI 2325 2.382 2372 2.352 2.342 2.322 
e7 144.736 145.37 145.19 144.79 144.59 144.19 

Table 3. Superposition model analyses of the rank-2 spin parameters (tabulated by 
Lelkns ct 01 1978) of the frvr Gd’+: Mf :  and C3F2 complexes (M = Li, Na, K 
Rb and Q) using llie nlculalcd ligand psilions from Bijvank and klnrtog (1980b) and 
from llir present work (see table 2). All p?rameien apart from 12 and Ro are in units 
of C; (IC; = 9.300 x IO-’ cm-l). [SI means X is fued in the fitting and values in 
pnrtnllirses indicate errors in the last figures. 

Bijvank and Hartog (1980b) Present calculation 

Exprrilnent (0) @) (4 (4 (4 
U+ E: 17.7(2) -10.3 20.3 49.0 3.0 3.0 

Bi  -4h.3(2) -53.1 -35.6 5.2 -47.9 -47.9 
Nnf E: 3.4(2) 5.3 31.6 68.2 34.8 34.8 

Bi -20.1(2) -110.3 -142.9 -14.5 -25.9 -25.9 

cs+ E: 220.5(2) 141.3 154.6 169.5 204.6 204.6 

B; -4%( 128) -436(123) -316(56) -2(,I(Zh) -2(,0(26) 
[Ol V) I01 -60(10) -60(10) 

E: -N).O(Z) -19.5 -0.0 -0.93 -41.8 -41.8 
Kf E! 83.6(2) 55.7 60.0 109.2 103.1 103.1 

Rb+ B: 141.8(2) 119.5 144.8 129.3 136.8 136.8 
-ll.9(2) -16.4 16.4 -21.5 -16.3 -16.3 

E: -4.0(2) -72.2 -43.1 -35.9 7.2 7.2 

12.3541 [2.354] 12.3541 [2.354] 2.348(2) 
4.5(15) 6.8(26) -0.72(64) -2.2(5) 1-11 

462 43.3 .m4 i4.8 14.8 .. 

in the superposition model description of the spin parameters. It is remarked that 
the rank n = 2 spin parameters (table 3) can be used as a sensitive probe to measure 
the non-cubic displacemcnts of the ligands surrounding the Gd’+ ion as their values 
a re  identically zero [or Gd’t a t  cubic site symmetry. In contrary, the rank 4 spin 
parameters (tahle 4) are  less sensitive to local distortions because there a re  already 
some large values of non-zero cubic components, Br (cub ic )  > lOBY(non-cubic), 
overshadowing the minute crystal field effect due to non-cubic distortions. Although 
the conventional form has yielded a good lit for the rank 4 spin parameters of G d 3 +  
at cubic sites in various fluorite lattices (see Yeung (19%) Tor detailed references) 



Table 4 Superposition model annlyses of n n k  4 spin panmeten of Uie five Gd3+: M+: 
CaFl complexes (see table 3 for details). All pm"en except lq and Ro are in units 
of C; and IC; = 9.300 X IO-' Cm-I. [SI means X is rmued in the fitting and values in 
parentheses indicate erron in the last figures. 

Bijvank and I-lartog (1980h) Present calculation 

Experiment ( 0 )  ( b )  ( C )  (4 (e)  
lit E: 0.139(5) 0. 165 0.167 0.193 0.168 0.168 

Na+ Bf 0.164(5) 0. I80 0.183 0.189 0.168 O.lh8 
E: 4.12(5) 4.07 4.02 3.98 4.00 4.00 
E: -2.95(5) -2.94 -2.96 -3.01 -2.88 -2.88 

B: 3.97(5) 4.16 4.15 3.97 4.00 4 . w  

RI?+ B: 0.181(5) 0.175 0.180 0.179 0.180 0.180 
B: 3.94(5) 4.03 4.01 3.97 4.01 4. w 
E: -3.24(5) -3.10 -3.15 -3.00 -3.05 -3.u5 

B: -3.25(5) -3.09 -3.13 -2.99 -3.19 -3.19 

8: 4.07(5) 4.09 4.02 3.98 4.01 4.01 
B: -2.85(5) -2.86 -2.88 -3.01 -284 -2.84 

K+ E: O.lSS(S) 0.136 0.136 0.181 0. I74 0.174 

Bi -3.27(5) -2.82 -2.83 -3.01 - 2 9 9  -2.99 

cs+ Of O.l69(5) 0.156 0.160 0. I77 0.197 0.197 
B: 3.73(5) 4.06 4.06 3.96 4.05 4.05 

si 0.256(7) 0.255(7) 0.257(5) 0.240(8) 0.258(21) 

s; 101 -3.6(70) IO1 43(16) 36(16) 

14  2.4(22) 3.4(29) -5.6(8) -7.2(9) [IO] 
RMS 0.164 0.159 0.144 0.128 0.127 
dcvialion 

RO@) [2.354] [2.354] 12.3541 [2.3.54] 2252(35) 

with t4 = 10, it is valid for a very narrow spread of ligand distances (ahout +0.8% 
with respect to the mean distance R = 2.347 A) whereas the present set of systems 
shows a much greater distance variations (f2.676 with E = 2.322 A). 

Furthermore, we have purposely lixed the values of 1 , ,  in column (e) in tables 3 
and 4 a t  those d u e s  ohtaincd by Edgar and Newman (1975) for the single power-law 
form (3) while the reference distance R, is free to w r y  away from the host ligand 
distance. The  results are such that the fitted values of the spin parameters in fits 
( d )  and (e) are essentially identical. showing that the power-law exponent f.? can 
be fully absorbed in the parabolic form. It is also noted that we have attempted an 
alternative fit to substitute for the exponent 2 in the second term of equation (10) with 
an adjustable parameter, but the hest fitted value is 2.4 f 1 . 1  without any significant 
reduction in the RMS deviations. Another alternative is to try a double-power-law 
form as descrihcd hy equation (2), hut the contributing least-squares fit equations for 
the present sets of data a re  nearly ill-conditioned as the free parameters a re  highly 
correlated. Consequently, no  unique or convergent values of parameters for (2) could 
be obtained and this problem may be overcome only if the physical system contains 
ligands spreading at much wider distances R,. 
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4. Conclusions 

The Kanzaki lattice statics method has been modified and adapted specifically for 
calculating the local distortions around the live orthorhombic Gd’+-M+ (M = Li, 
Na, K, Rb and Cs) complexes in CaF,. Our lattice relaxation model is more reliable 
than Mott and Littleton’s semidiscrete model used by Bijvank and Hartog (1980b) 
in three principal aspects: (i) no continuum approximation and mismatch problem 
embedded in the foundation of the model, (ii) higher accuracy for ionic shifts in 
the GdSt: K+: CaF, complex as wmpared  with ENDOR and ESEEM experiments, 
and (iii) much better description of the spin parameters of Gd3+ on using the 
calculated ligand positions in conjunction with the superposition model. As mentioned 
in section 1, there a re  various cancelling physical mechanisms contributing to the 
intrinsic spin parameters B,( R )  of GdS+ and the overall effect would result in a 
local U-shaped extrema according to Newman and Urban (1975). The  results of our 
present superposition model analysis (with local distortions) also empirically wnfirm 
the existence of such U-shaped extrema which can hest he described by our parabolic 
form given in equation (10). The  conventional power-law form (3) for B,(R) which 
could not represent any cancelling effects was shown to he rather inadequate for 
greater ligand variation and the second term of our generalized form (10) also asserts 
the importance of the cancelling nature of various physical contributions to the ground 
state splitting of Gd3f. In other words, our empirical data o n  the distance variation of 
the F- ligand against the intrinsic parameters of Gd” should he very useful in filling 
in the details of ah inirio wlculations (e.g. Newman and Urban 1975, Pastusiak 1984, 
Siu 1990) of the major contributions based on existing or  new physical mechanisms. 
They should also be useful in comparing such calculations with experimental results 
o n  the sign and magnitude of the zero-field splitting of Gd”, as well as their distance 
variation. 
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